Das charakteristische Spike-Protein des COVID-19-Erregers lässt sich mitunter auch Jahre nach der Infektion noch im Gehirn finden, zeigt eine neue Studie. Diese Ansammlung erklärt womöglich neurologische Langzeitfolgen von COVID-19.
Forschende von Helmholtz Munich und der LMU haben einen Mechanismus identifiziert, der möglicherweise die neurologischen Symptome von Long COVID erklärt. Die Studie zeigt, dass das SARS-CoV-2-Spike-Protein in den schützenden Schichten des Gehirns, den Hirnhäuten, und im Knochenmark des Schädels bis zu vier Jahre nach der Infektion verbleibt. Diese dauerhafte Präsenz des Spike-Proteins könnte bei den Betroffenen chronische Entzündungen auslösen und das Risiko für neurodegenerative Erkrankungen erhöhen.
Das Team unter Leitung von Prof. Ali Ertürk, Direktor des Instituts für Intelligente Biotechnologien bei Helmholtz Munich, stellte zudem fest, dass mRNA-COVID-19-Impfstoffe die Anreicherung des Spike-Proteins im Gehirn deutlich reduzieren. Das nach einer Infektion verbleibende Spike-Protein in Schädel und Hirnhäuten stellt ein neues therapeutisches Ziel dar.
KI-Bildgebungstechnik ermöglicht neue Einblicke
Eine neuartige KI-gestützte Bildgebungstechnik, entwickelt von Prof. Ali Ertürks Team, liefert neue Einblicke, wie das SARS-CoV-2-Spike-Protein das Gehirn beeinflusst. Die Methode macht Organe und Gewebeproben transparent, wodurch die dreidimensionale Visualisierung von Zellstrukturen, Stoffwechselprodukten und in diesem Fall viralen Proteinen möglich wird. Durch diese Technologie konnten die Forschenden eine bisher nicht feststellbare Ablagerung des Spike-Proteins in Gewebeproben von Menschen mit COVID-19 und Mäusen aufdecken.
Die im Fachjournal Cell Host & Microbe erschienene Studie zeigte signifikant erhöhte Konzentrationen des Spike-Proteins im Knochenmark des Schädels und in den Hirnhäuten, selbst Jahre nach der Infektion. Das Spike-Protein bindet an sogenannte ACE2-Rezeptoren, die in diesen Regionen besonders häufig vorkommen. „Das könnte diese Gewebe besonders anfällig für die langfristige Ansammlung des Spike-Proteins machen“, erklärt Dr. Zhouyi Rong, Erstautor der Publikation. Ertürk ergänzt: „Unsere Daten deuten auch darauf hin, dass das persistierende Spike-Protein an den Grenzen des Gehirns zu den langfristigen neurologischen Effekten von COVID-19 und Long COVID beitragen könnte. Dazu gehört auch eine beschleunigten Gehirnalterung, die für Betroffene den Verlust von fünf bis zehn Jahren gesunder Gehirnfunktion bedeuten könnte.“
Die Herausforderung Long COVID
Weltweit haben sich 50 bis 60 Prozent der Bevölkerung mit COVID-19 infiziert. Davon leiden fünf bis zehn Prozent unter Long COVID. Das entspricht etwa 400 Millionen Menschen, die möglicherweise signifikante Mengen an Spike-Proteinen in sich tragen. „Das ist nicht nur ein individuelles Gesundheitsproblem – es ist eine gesellschaftliche Herausforderung“, sagt Ertürk: „Unsere Studie zeigt, dass mRNA-Impfstoffe das Risiko langfristiger neurologischer Folgen erheblich senken können und somit einen entscheidenden Schutz bieten. Aber auch nach Impfungen kommt es zu Infektionen, die zu persistierenden Spike-Proteinen im Körper führen können. Die Folge können chronische Gehirnentzündungen und ein erhöhtes Risiko für Schlaganfälle und andere Hirnschäden sein – die dann erhebliche Auswirkungen auf die öffentliche Gesundheit und die Gesundheitssysteme weltweit haben.“
Das Spike-Glykoprotein von SARS-CoV-2 ist eine nach außen ragende Proteinstruktur (Peplomer) des SARS-CoV-2 Virions. Es ist ein transmembranes Glykoprotein auf der Virusoberfläche des SARS-CoV-2 und dient als Ligand zum Andocken an ACE2 auf der Zelloberfläche sowie als fusogenes Protein zum Zelleintritt. Wie bei den anderen Mitgliedern der Coronaviridae bilden die Spike-Gykoproteine die markante und namensgebende (lateinisch Corona ‚Krone‘) Oberflächenstruktur dieser Virionen.1
Bild: NIAID-RML (https://www.niaid.nih.gov/ & https://www.niaid.nih.gov/about/rocky-mountain-laboratories), CC BY 2.0, via Wikimedia Commons